
e
e
 ~

a

Y
e
)

Os

IR £1 Aus $1

SENSE & SENSIBILITY Our robot series
continues by looking at how robots can be
made to ‘sense’ what is happening around
them by fitting them with sensory devices

SHOPPING AROUND We review 10 of
the most popular home computers and give
you some guidelines on buying

CALCULATING MACHINE Many home
computers have spreadsheet programs
written for them, and although they may lack
the versatility of programs such as Visicalc,
they can manage small business applications

oo 2 1) What happens to a ‘grandfather file’?

DRAGON SLAYER We develop a Loco = 2) What are decoders? |

ame for the C dore 64 that full 3) What do transducers do?

ee ee y i 4) Where would you find the system variable
exploits the machine’s sprites potential | .

weekly GATES TO GRAY CODEA
glossary of computing terms

CALLING COMMODORE We have
developed a utility program that creates a list
of variable names for the BBC Micro and the
Spectrum, now we develop a program for
the Commodore 64

SUSPENDING OPERATIONS Interrupt
routines suspend the task the processor is 69 /
carrying out in order to convey information
to it. We learn how to implement them in
machine code

a

DISPLAY COUNTER We enhance our :
user port system by building a seven- 685
segment display unit that will display the
contents of the user port data in hexadecimal

REFERENCE CARD We continue to list INSIDE
extracts from the Z80 programmers’ BACK
reference card COVER

COVER PHOTOGRAPHY BY IAN McKINNELL

Beene ee eee

Our series of articles has now considered
methods of controlling robot movement and
the design of robotic ‘arms’ and ‘hands’. We
now turn our attention to the ways in which
robots can ‘sense’ what is happening in the
world around them. |

The human sensory apparatus is something that
we take very much for granted, but a person
lacking all senses would be totally helpless.
Without a sense of sight, you would bump into
objects as you tried to walk; lacking a sense of
touch you would not even know that you had
bumped into anything; total deafness would mean
that you could not even receive a warning that you
were about to walk into an object. In fact, you
wouldn't be able to walk at all, because internal
senses are required to inform your brain of the way
in which your body is moving.

We have explained how a robot can move
around, but we must also provide it with a sensory
system before it can act independently. It is
tempting to try to design a robot that possesses all
human senses — it could then perceive the world
in much the same way as we do. As yet, however,
this is impossible. The subjects of robot vision and
speech understanding are so complex that we will
deal with them at length in a later article. Here we
will concentrate on simple approximations of sight
and hearing that are far below the level of
complexity possessed by humans. — |
A robot can be made to ‘see’ things quite easily

by providing it with a light sensor — usually a
photoelectric cell — which produces a voltage that
varies with the amount of light falling on it. This is
a very crude vision sensor, but it can be used to
good effect. For example, a robot can be made to
‘home in’ on a bright light in much the same way as
it can follow a line (see page 641). This might be
used to allow the robot to return to a power point

Robotic Sensation
The sensing equipment that a
robot needs depends entirely
upon its functions, but the more
general-purpose the robot, the
more sensors it is likely to need.
The robot illustrated has
examples of most of the
possible sensors available,
though it is unlikely that any
single robot would carry such a
range

THE HOME COMPUTER ADVANCED COURSE 681

KEVIN JONES

for recharging when its batteries run down. (Note
that this will require the robot to possess an
internal sensor for monitoring the state of its
batteries so that it ‘knows’ when they are low.)

This simple photoelectric cell can allow a robot
to perform a number of tasks. A robot working on >
an assembly line would be able to check if a
component was present by detecting the change in
brightness that results from the object’s absence;
this task can be made easier by ensuring that the
lighting is arranged so that such a difference is
accentuated. The robot could detect colour

SENSORS
The optical sensor is a slow-
scan low-resolution
monochrome television
camera. It produces an image
in shades of grey that contains
enough information for simple
tasks such as line-following
and edge-detecting

The infrared camera
composes its picture in much
the same way as the television
camera, but senses infrared
rather than the visible light
spectrum. Infrared penetrates
smoke and haze better than
light, and also reveals the
temperature of objects

Ultrasound is high-frequency
sound used here for
directional range-finding. The
scanner consists of the
ultrasound emitter and the
directional microphone
receptor. When ultrasound
bounces off an object, the
texture of the reflecting
surface distorts the echo
waveform in a unique and
recognisable ‘signature’

The low-power laser scanner
is used for high-accuracy ©
direction- and range-finding.
Laser light can be very finely
focused, which allows precise
detailed examination of
nearby objects

The gas proximity detector
consists of a gas emitter and a
pressure sensor. The emitter —
regularly squirts gas into the
chamber, which causes a
known increase in the ambient
pressure; if an object is close
to the mouth of the chamber, it
will affect this pressure
increase in a detectable way

The light pen can be used for
many kinds of digital input, of

ae

The multimeter probes allow
the measurement of
resistance, capacitance,
voltage and current, and can
also function as
thermocouples allowing
temperatures to be measured

682 THE HOME COMPUTER ADVANCED COURSE

changes if three photoelectric cells were
incorporated, each responding to light of different
colours — red, green and blue would cover the
visible spectrum. Such a robot could be
programmed to pick out red bricks from a pile
containing bricks of many different colours. ‘This
gives the impression of ‘intelligent behaviour
from a very simple sensor.

_ Providing the robot with a microphone will
allow it to ‘hear’ acoustic signals. It will not
‘understand’ what it is hearing, but this need not
matter — by repeating a set of commands several
times, the robot can build up a ‘template’ of sound
for each command that will enable it to match new

- commands against those it has already heard. The
number of commands to which it can respond will
be limited, but we could tell it to ‘go forward’,
‘stop’, ‘turn left’, and so on, and it would be able to
follow these instructions. 3
A robot can also have a simple sense of touch.

Microswitches can be incorporated into the robot’s
design so that they make an electrical connection
whenever pressure is applied to them. These lack
the sophistication of the human sense of touch, but
they can still be very useful. For example, touch
sensors mounted around the edge of a mobile
robot can allow it to respond intelligently to any
obstacles: it will be able-to back away from the
obstruction and try a different route. Touch
sensors incorporated into a robot hand will let it
‘know’ when it has something within its grasp so
that it can respond accordingly.

Smoke or gas detectors can be used to give a
robot something of a sense of smell. Gas detectors
normally use a sensory element (such as a
platinum wire) that responds to the presence of
certain gases, thus altering the electrical current
flowing through the element. Smoke detectors
have two chambers — one enclosed, acting as a
reference or ‘control’, and the other open. Both
chambers contain ionised helium and the number
of charged particles in the open chamber varies
when smoke is present. A detector that counts the
number of charged particles in each chamber will
register a difference between the two if smoke is
present.

As yet, there appears to be no way in which a
robot can be given a sense of taste. However, using
the methods suggested above, we at least have a
robot that can see, hear, feel and smell well enough
to detect a fire in a building, rush towards the
flames, avoid obstacles in its way and, if it happens
to have a fire extinguisher in its end effector, spray
the fire with foam.

POTENTIAL GAIN
But in limiting a robot to the type of senses
possessed by humans, we lose much of its
potential. There is no reason for the robot to be
restricted to detecting things in the ways that we
detect them. A better approach might be to
consider what senses can be given to a robot and to
decide if there is any practical use for them.

_ A good example of this concerns robot arms.

—3—

Let’s assume that we want a robot to pick up an
object from one location and then place it
somewhere else. One way of doing this is to fix end
stops around the arm so that it can travel a set
maximum distance in any given direction. The
arm would then swing around until it came to the
end stops, at which point (if everything was
positioned correctly) the hand would be directly
above the object to be grasped. After picking up
the object, the arm could swing in the opposite
direction until another set of end stops would let it
know that the object should be released. This is a
simple example, and it is one that is becoming less
common, but it demonstrates that robots can use
senses that are not possessed by humans.

Perhaps a better example is a robot’s use of
‘vision’. Humans see only visible light — a large
part of the electromagnetic spectrum is invisible to
the human eye — but there is no reason why a
robot should be so confined. Infrared detectors —

may be fitted in place of photoelectric cells; these
will allow the amount of heat generated by an
object to be measured. Industrial robots can make
use of these detectors to move away from any
dangerously hot objects, for example. But a robot
could also detect the warmth of a human body —
so your personal robot could be programmed to
come running to greet you as you walk through
your front door! Robots can also be made to detect
magnetic fields. This has already been discussed in
connection with robots that follow a track laid in
the ground, but this facility would also be useful in
applications in which a robot must differentiate
between magnetic and non-magnetic materials.

Proximity sensors have no direct human
equivalent — these are merely devices that can
detect when an object is near them. Humans use a
combination of sight and touch for this purpose,
but a simple proximity sensor is just as suitable for
robot use. Such sensors work in a number of
different ways. One type uses an air jet squirted
through a nozzle; any object in the jet’s path will
deflect the air back towards the nozzle. This
creates a back pressure that may be detected by a
pressure transducer, thus warning the robot that
something is near. Another type depends on the
fact that an electrical circuit with a capacitance will
change its behaviour if it approaches another
object. An electrical ‘leak’ between the capacitor
and the object (which will have a capacitance of its
own) will inform the robot that an object is nearby.

TRANSDUCERS
There are also ultrasonic sensors that work by
emitting an ultrasonic signal and then picking up
the echo from the nearby object. The time delay
between the signal and the echo gives an exact
measurement of the distance from the object. This
is similar to the method used by bats for
navigation, and the principle is also used in some
auto-focusing cameras.

More sophisticated still are laser sensors. These
direct a laser beam onto an object, which then
reflects the laser light back to the sensor. By

comparing the two beams it is possible to
determine the object’s distance with astonishing
accuracy. This technique can be used over great
distances. During the first manned lunar landing, a
reflector was placed on the moon so that a laser
sensor could measure the exact distance between
the Earth and the Moon. The accuracy of this
measurement is said to be within 15 centimetres
six inches) over a distance of 384,400 kilometres
(250,000 miles)!

Force sensors are a means of obtaining tactile
information by more sophisticated means than.
mechanical microswitches. These work by
measuring the change in the electrical properties
of a piezo-electric crystal when it comes under
pressure, or by calculating the change in
conductivity of carbon graphite granules under
pressure (using a technique identical to that
employed in the carbon microphone).
Alternatively, strain gauges can be used to
measure large forces by detecting changes in the
electrical resistance of a wire as it is stretched.

These robot sensors come under the heading of
‘transducers’, as they take a measurement in one
form (such as light, sound or pressure) and convert
(‘transduce’) it into another form that in some way
represents the original measurement. On a
computer-controlled robot, the transducers
almost invariably convert the measurement into
an electrical signal that may be binary (i.e. the
signal is either present or absent) or analogue (the
signal varies as the original measurement
changes). In the latter case, the electrical signal
must be converted into a form the computer can
understand by using an analogue-to -digital
(A/D) converter. |

It is fair to say that a robot’s senses are not, at the
moment, as comprehensive or as effective as the
human equivalents. But the robot has more of
them — and they are getting better all the time.

No Sense, No Feeling
This industrial robot arm is
cleaning castings straight from
the mould when they are still too
hot to be touched by human
hands. The robot is impervious
to heat, of course, and
therefore processes the work
more quickly

THE HOME COMPUTER ADVANCED COURSE 683

rears
sseonceanaienen cent a eat EEA

Sense From The Sensors
Making sense of the outside world is the robot’s greatest
problem, the more so as the range and complexity of its sensing
equipment increases. No single sensor will give a completely
informative picture, and some may seem to contradict one
another. The extent to which the robot can integrate and compare
the input from its various sensors is the measure of its external
‘consciousness. :

The plan shows that, in this example, the robotis in a
corridor whose walls are painted flat white; there is only one light
source, so the illumination of a wall depends upon its orientation.
Near the robot is a yucca palm

% hy Ws
\ SN

AN
% \ \

scemasenieel

acon oon
onsen

seen So

=

oe

eee . .

Se
Se . oo RRR x a

Ra SRN SS oS a Ss Seana
. . SSRN CHSRSCR RSE SEEN SRR ARO

SONS aN exeG
ae s

The range-finding laser
enables the robot to draw an
accurate plan of its
surroundings, and reveals the
outlines of the yucca-patm-A~
sence eran

small-mevementby the robot
‘wiltproduce parattax with

spect to the yucca, which ~
allows the ropot to distinguish mtr aan

it as an object isolated from
the Surrounding walls

The television camera gives a
low-resolution monochrome
panorama of the
surroundings; this can be

by the processor’s
Coniques to permit

and movement
ibutes little

STEVE CROSS

He
HE Ht set

Hn
See

Hh

ae itt
+f if

ih et i ti ce Hi if a L a Leas i
i it if

See

.
| #H Ha na

ce i
ete iat Hit Hit Ht Ht

ETE a iH ath if

| oe | | . :
oe ee # i HH SE i H L

: j .

DISPLAY COUNTER
siti fieutatitit ditt

In this instalment of Workshop we add two
seven-segment displays to our user port
system that will enable us to display the
contents of the user port data continuously
in hexadecimal.

In order to display hexadecimal digits, four bits are
required (four bits give us 16 permutations of zeros
and ones). Thus, any eight-bit number can be
represented using two hexadecimal digits: one for
the lower four bits and another for the upper four.
Although each display is made up of seven LED
segments, the various combinations of segments
can be ‘driven’ by four input lines if decoder logic
is incorporated into the circuit.

Decoders are circuits that translate instructions
from the computer to its peripherals into electrical
signals, and vice versa. In our series on logic we

— built our own decoder circuit (see page 146), but
for this exercise we can buy an off- the-shelf logic
circuit. This is chip 7447 in the parts list. |

The decoder for each display accepts four input
lines from the user port and, via a sequence of logic
gates, provides seven outputs. The logic circuit has
been designed in such a way that if, say, the four
input lines were 0111, then the appropriate bars
would be lit to display the figure 7 (0111 in binary
is equivalent to 7 in hexademical). The truth table _
for this 1s shown in the margin.

Hexadecimal digits greater than nine are
usually represented by the first six letters of the
alphabet — A to F You will notice that the
decoder chip that we are using has rather strange
patterns to represent these digits. It is probable
that these patterns can be generated using the logic
circuits required for the digits zero to nine. More
decoding logic would be needed to display the last
six hex digits in the more usual alphabetic way, so
by leaving the extra logic out and using different
symbols for these digits, the number of logic gates
in the decoder is reduced, thus bringing down the
cost of manufacturing the chip.

- Once the display circuit has been built we can
display continuously the contents of the user port
data register in hex using the eight data lines
provided. There are sufficient lines: available to
drive the two displays simultaneously, but in many
display applications this is not the case and several
seven-segment displays have to share the same
data lines. So that each display can show different
information at the same time, a technique called
‘multiplexing’ is used. Essentially, the data lines
from the display decoder are flipped from one
display to the next, the data present on the lines
also being changed appropriately. If this is done

fast enough all the displays multiplexed in this way
will appear to glow continuously, each displaying
the data that was present at the time when it is
momentarily connected to the data lines.

We can demonstrate the principle of
multiplexing using the two seven-segment
displays that we are building. Because the display
decoder represents decimal 15 by a blank, we can
use this number to blank out one display while
lighting the other. The following program, when
run, asks for a digit to be displayed and then
appears to show the digit on both displays
simultaneously. However, a routine is included
that inserts a delay to slow down the oscillation
between the two displays. The delay is inserted
while the Space bar is depressed. We can see, on
running the program and depressing the Space
bar, that the digit does in fact flip backwards and
forwards between the two displays. When the
Space bar is again released, the delay is removed
and the flipping action is faster, making the digit
seem to appear simultaneously on each display.

1@ REM BEC MULTIFLEXING
20 DDR=&FE62: DATREG=2FE6Q
38 ?DDR=255
4Q@ left _blank=15#*16

od

60 REFEAT

7@ INFUT" DATA TO BRE MUL TIFLEXED"sdata

84 SDATREG=datatleft blank

SQ FROCsS]lower

100 ?DATREG=data*iétright_ blank

114 FROCSs] ower

128 GOTO8@

13@ END

iS@ DEF FROCSs!] ower .

So: REM--1S. SPACE BAR -PRESSED. >

THE HOME COMPUTER ADVANCED COURSE 685

Laying it Out
Cut the veroboard to the two
sizes required (19 tracks of 46
holes; 15 tracks of 28 holes). Cut
the track breaks first on both
boards. Solder the two chip
sockets in place first, then the
wire links and the resistors. If
the bus extension socket is not
required, then omit the red-
coloured links in the illustration.
Fit the minicon plug and
(optional) socket to the main
board, and solder the display
unit in place — dots towards the
socket end of the board. Solder
the connection ribbon cables in
place, so that they go straight
from board to board without
twisting. Now plug in the chips
— make sure they are oriented
as shown

WIRE LINKS

RIBBON CABLE A NOTCH

MINICON SOCKET
(OPTIONAL)

WIRE LINKS
(OPTIONAL)

RIBBON CABLE B

NOTCH:

IF INKEY (-99) =—1

ENDFROC

18@ :

DEF FROCdel ay

FOR I =1 TO S@@:NEXT

ENDFROC

THEN FROCdel ay

10 REM CRM 64 MULTIFLEXING
320 DDR=S56579s DATREG=36577

4Q@ FOKEDDR, 255

SQ LB=15*16:RB=15

60 INFUT"DATA TO BE MULTIFLEXED"; DT

7@ FOKEDATREG, DT+LB
80 GOSUBIOOG:REM SLOWER

90 FOKE DATREG,DT*#16+RE

100 GOSUBI@OB:REM SLOWER

110 GOTO7O

126 :

1A@@

191@

REM SLOWER
GETA£

i9@2Q@ IFAt="
1920 RETURN
i999 :
2000 REM DELAY S/R
2@10 FORI=1 TO 25@:NEXT
2020 RETURN

3 / FX

"THENGOSUB2000: REM DELAY

A simple application is to use the twin seven-
segment displays as a hexadecimal counter. ‘This
displays a count of the number of pulses input to
the user port from a simple make-or-break switch
connected to one port line. On first glance this
seems a trivial task until you realise that all eight
user port lines are needed for the display, leaving

686 THE HOME COMPUTER ADVANCED COURSE

TRACK BREAKS DOUBLE DIGIT DISPLAY UNIT

RIBBON CABLE A

DISPLAY BOARD

RESISTORS NOTCH

DECODER CHIPS:

MINICON PLUG

WIRE LINKS

RIBBON CABLE B

RIBBON CABLE A

NOTCH

none for input. If we specify one of the lines for
input, say line 0, then the computer’s I/O system
will always hold this line high, no matter what
number may be present in the data register. If 128
(10000000 in binary) were to be placed in the data
register, then this would instantly be changed to
129 (10000001) because line 0 is held high for
input. This would obviously give incorrect count
values on the displays. The solution lies in using a
technique similar to multiplexing. If we set line 0 to
accept input for a short time only and set all lines
to output for a longer time, then the displays will
appear to glow continuously with the correct
counter value, with only a flicker of the incorrect
value caused by setting line 0 for input.

10 REM BAC COUNTER

=@ DDR=&2.FE62: DATREG=2FE 60

28 count=0

6@ REPEAT

7@ PROCinput

72 FROCadd

73 FORI=1T04@

73 FROCdisplay

77 NEXT I

8Q UNTIL count 258

90 END

1@@0 DEF FROCadd
1@1@ IF flag =1 THEN count=count+l

1Q@5@ ENDFROC

1499
1500 DEF FPROCinput

Figure it Out —
The input to the digital display

1510 ?DDR=254 from the user port is a four-bit
i515 flag=0 binary number. Associated with
i520 IF (?DATREG AND 1)=@ THEN flag=1 each of the numbers 0000 to 1111

1525 REPEAT UNTIL (?DATREG AND 1)=1 is a unique seven-bit number,

153@ ENDFROC each bit of which signals the
1 oo state of one of the seven
2088 DEF FROCdisplay segments of the display. In this
= . 2 ee display code a zero bit means
ee *DATREG=count that the corresponding segment
“ is to be lit, and a one indicates 4 ENDFROC

1@ REM CEM 64 COUNTER
30

40

par]
68

7@

8@
90

DDR=56579: DATREG=56577
CC=@:REM INIT COUNT

GOSUBI@OO:REM INFUT

GOSUB2Z@00:REM ADD

FOR [=1TO020
GOSUBZ900:REM DISPLAY

an unlit segment

10@@ NEXT I
110 IF CC<255 THEN6@

120 END

999
igae
1010
1920
1930
1242
1950
1999
2000
2010
2020

REM INFUT S/R
POKEDDR , 254

FL=2
IF (PEEK (DATREG) AND 1)=@ THEN FL=1
IF (FEEK (DATREG) AND 1)<31 THEN 1040

RETURN

REM ADD S/R
IF FL=1 THEN CC=CC+1
RETURN

2799 3
2000 REM DISPLAY S/R
2@1@ POKEDDR, 255
2020 FPOKEDATREG,CC
20220 RETURN

In each cycle of the program, a FOR... NEXT loop is
used to repeat many times the routine where all
lines are set to output, for each routine where line 0
is set for input. For the Commodore 64 version, 20
display: routines are executed for each input
routine. This ratio is increased to 40 for the BBC
version due to the increased speed of execution of
the BBC Micro. With these ratios, a flicker is still
detectable, but if the ratio is increased still further
to produce a smoother display, then it is possible
that the amount of time spent looking for an input
is reduced so much that inputs may be missed
altogether. In ‘real-time’ electronics such
compromises between conflicting demands of
parts of a system have to be made.

Ail Boxed Up
Since each digital display needs
a four-bit input code, two
displays can be driven from the
user port. They are boxed in one
unit compatible with our
previously-built interfaces and
devices

7447A BCD To 7-Segment
Decoder/Driver
The internal circuitry of the chip
shows the essential simplicity
of its logic — the four-bit input
is decoded into the seven
segment outputs by the logic
gates. The lamp test input
switches all segments on
simultaneously to test the chip

THE HOME COMPUTER ADVANCED COURSE 687

688 THE HOME COMPUTER ADVANCED COURSE

GATES
The electronic circuitry that comprises most of a
computer’s working parts consists of thousands of
different kinds of switches: information is

' represented in the machine by patterns of
electrical currents, and its processing is effected by
switching it through the various routes that these
switches, or gates, provide. Gates are so called
because their function is to allow or deny the
passage of information according to the properties
of the information and the nature of the gate.

The elementary gates are the AND and OR
gates, corresponding to the logical operations of
Boolean algebra (see page 32). All logical
expressions can be reduced to expressions of these
operators, so all the processing functions of the
computer can be built using only these gates. The
practicalities of integrated circuit construction,
however, make NAND and NOR (AND and OR
gates with an inverter on the output) cheaper and
more convenient to use in large quantities.

GLOBALITY
In a comparatively simple programming language
such as BASIC, the variables used in one part of a
program are usually available in all other parts of
the program, so if X is initialised as 134, say, at the
start of the program, then any subsequent.

_ reference to X will be to that variable containing
the value 134. Such variables are said to be global
in scope. This is often a convenient feature, and is
so commonplace in BAsic that alternatives
are rarely considered. However, it can present

problems, particularly in large programs, and
especially those written by more than one
programmer, or when library routines are merged
with existing programs. Using a variable in. one

part of a program, then inadvertently re-using it
elsewhere for a different purpose is a very
common error, especially when the dialect insists
on single-character loop-counter variables. ‘The

_ real shortcoming of global variables is the threat
they pose to program structure. A logically
independent block of code such as a subroutine or
procedure should be accessible only through the
calling mechanism (GOSUB or PROC), and should
affect only those variables that are passed to and
from the routine as parameters; if variables are

- global, however, then the subroutine can affect
their value whether or not they are passed as
parameters. :

Some BAsic dialects, and many other languages
(such as PASCAL), support local variables, whose
scope is limited to the logical block in which they
are defined. If X is set at 134 in the main program,
for example, and control passes to a subroutine
containing the statement LOCAL X, then inside that
subroutine X can be used and re-used without
affecting the value of X in the main program.

GRANDFATHERING
Grandfathering is the name given to a system of
updating files that retains a copy of the original
file, as well as creating new, amended files. This

‘i

system ensures the safe storage of information, as _
if a file is accidentally destroyed, there is always a
copy in existence. Once a file is amended it is
referred to as the father file, and the file from
which it was created the grandfather file. Any
subsequent update of the father file is known as
the sonfile. As the file is updated, the latest version
is always the son file and the most out-of-date the
grandfather file. Only three generations of files are
stored at once, so as new files are created, the
current grandfather file is deleted.

GRAY CODE
In computerised control applications, positional
data written on a moving object must often be read _
by a mechanical reader. The accuracy of the
reading is subject to errors in the timing of the read
cycle, and it often happens that a small error
causes the sensors to point to the gaps betweer the
data rather than to the data itself. Itis then a matter
of chance which of the two numbers is read by the
sensor. The Gray codeis a way of encoding binary
data to minimise the effect of such errors. The
principle of the code is that only one bit of a
number changes with every successive increment
of the number, and the bit that does change should
be as far to the right in the number as possible.
Compare these numbers in binary and Gray code:

Decimal Binary Gray Code
po 0001 0001
2 0010 0011
3 0011 0010

4 0100 0110

5 0101 0111

If the mechanical reader is positioned between two
consecutive Gray code numbers and reads the
wrong one, then the error is confined to one bit,
since there is only one bit that changes.

LIZ DIXON

~

oe

As new and improved machines are
appearing on the market all the time, many
people find themselves replacing or
upgrading their computers every couple of
years. Here we present some advice on
buying a home computer, and give some
indication of the strengths and weaknesses

. of the more popular models.

When buying a new machine, it is important to
consider exactly what your needs are — do you
want a computer that can be expanded by the
addition of peripherals, extra memory, etc., or can
you afford to treat it as a disposable item, to be sold
off when something better comes along?

Most of the newer models boast more features
than their older rivals, including bigger memories,
better dialects of BAsic, higher resolution graphics
and built-in software. But the older machines,
particularly those that have sold in large

~ quantities, have one major advantage — software
availability. Many buyers of newer computers will
have to wait for months before a large range of
software is available — and in some cases, this
software will never appear. A good example of this
is the Oric Atmos. This improved version of the
Oric-1 has been on sale for months, yet software
writers have been reluctant to produce material for
it. As a result, the sales figures for this machine
have declined drastically.

The three micros that are best served by
software houses are the Sinclair Spectrum, the
Commodore 64 and the BBC Micro. The
Spectrum, in particular, is a prime example of the
way in which creative software writing can
overcome a machine’s inbuilt limitations: some of
the programs for this micro can compare very
favourably with those produced for considerably |
more sophisticated machines. However, it is
unlikely that any of these three machines would
sell well if they were launched today: the Spectrum
has an extremely poor keyboard, the Commodore
64’s Basic lacks the commands to make the most of
the computer’s potential, and the BBC Micro has a
small memory and is decidedly overpriced by
today’s standards.

Most of the newer micros have more impressive
specifications, but lack the depth and breadth of
software. Anyone buying one of these newer
machines is gambling that it will gain popularity
and hence convince software developers to:
generate programs for it.

The major trend with the new home computers
is to provide more for your money. High quality
keyboards, larger user memories (64 Kbytes or

more) and good graphics are now standard. The
quality of the Basic interpreter has been improved
considerably in machines like the Commodore
Plus/4, Commodore 16, Sinclair QL and the
MSX micros. The Amstrad machine even includes
a monochrome or colour monitor in its price.

Another interesting new trend is the provision
of ‘bundled’, or free, software. The Sinclair QL 1s
supplied with four such programs: a word
processor, spreadsheet, database and business
graphics package. The Commodore Plus/4
provides a similar range, although the programs
are less sophisticated and really require a disk drive
before they can be used effectively. Other micros
concentrate on games. Four games are supplied
with the Commodore 16, and even Sinclair has
started supplying a six-pack of games with its ©
ageing Spectrum.

Anyone buying a new micro should consider
several other points. Some machines are more
expandable than others, allowing disk drives,
printers, modems and other peripherals to be
used. Some computers will accept standard add-
ons, while others will require ‘own-brand’
peripherals, which limits the user’s choice. A good
manual is essential — some machines are supplied
with dreadful ones, which confuse more than they
enlighten. The prospective buyer should also
consider the type of software available for each
machine — for example, the BBC Micro has a high
proportion of educational software, while the
Spectrum is a better bet for games.

IAN McKINNELL
Shopping for computers should
be just like shopping for clothes,
but somehow the weight of
technical information and the
range of choice combine to
make it more like a lucky dip. A
cool matching of your needs to
the machines’ capabilities is an
essential precursor to visiting
the computer store; try to decide
in advance what you're going to
buy, and then let the ‘feel’ of the
chosen machine be the last —
not the first — deciding factor -

THE HOME COMPUTER ADVANCED COURSE 689

Prices
il\ notice that

prices

article differ from

din the origin
al

of most

ng

- Readers Wt

given in this

significantly

sometimes by
 aS much as £

10

Si ian a—a—:cs —w00.._. BRR zx Too 2 00

Executives and accountants, using
expensive ‘business’ machines, are not the
only people who can benefit from a
spreadsheet modelling package. This series
is designed to provide a practical guide to
using cassette-based spreadsheets on home
computers.
ST SSS SSS

There are several gen cassette-based Gaal
modelling packages on the market for popular
home computers like the Sinclair Spectrum,
Commodore 64 and BBC Model B. This series of
articles aims to provide a practical, step-by-step
guide to using such spreadsheet packages for a
variety of everyday applications — including home
budgeting, working out the impact any changes in
interest rates might have on mortgage repayments,
and comparing the relative merits of leasing and
buying major household items.

The heart of any spreadsheet package is an
electronic ‘worksheet’, which is divided into
columns and rows (similar to a large ruled sheet of
modelling or graph paper). The television screen
(or monitor) acts as a movable window that can
display any part of this sheet (which is, of course,
bigger than the four or five columns and 10 to 15
rows that are shown on the screen at any one time).
An intersection of a column and row is called a

cell: each cell can contain numbers, text or
formulae. The spreadsheet uses a cursor —
normally a highlighted block — that may be moved
around it by using the cursor control keys. Any
entry of data from the keyboard is assumed by the
program to be intended for the cell that is currently
occupied by the cursor. 3

Cex commarmrcds arc aod

formu) we gata sre

JRRRRBRA 4! — m1
phe iF ial Y FEBRUARY MARCH

ENTER
S

formulae numeric
relative.

< values
y

4 or

a absolute cell and % for

eee Cae rarees rae GEaRERet JRBEREES 1 4aRa8
Or CC TOBER

i SO.
NOVEMBER DECEMBER

1So

Sa

692 THE HOME COMPUTER ADVANCED COURSE

This, then, is a rough outline of the basic design
of a spreadsheet. For this first article, we will
concentrate on a package called Vu-Calc; this is
marketed by Psion and is available for both the
Spectrum and the BBC Model B. Here we
consider the BBC version, which is almost
identical (except for certain minor, but irritating,
differences in the names of some commands) to
the version for the Spectrum.

Vu-Calc demonstrates just how flexible and
useful a very simple spreadsheet can be. It doesn’t
have any of the more sophisticated features of
modelling packages like Lotus 1-2-3 (see page
644). You can't split the screen vertically or
horizontally to show different parts of the
worksheet at the same time (a facility supplied on
the more ‘serious’ modelling packages), and you
don’t have anything like the number of features
offered by spreadsheets designed for business use.
But you can use Vu-Calc to construct some very
useful models, which may be saved on cassette,
together with your data, for later reference.

The version of Vu-Calc for the BBC Micro has
a maximum of 28 columns (numbered from 1

values
for absolute cell and %

HUME 1 1 BARGES | CARR SEEE 1 SUARREEe i seesS
OCTOBER NOVEMBER mei ro

iso

upwards) and 52 rows (labelled alphabetically,
with rows after ‘Z’ allocated double letters — AA’,
‘BB,, etc.). This is not very large by spreadsheet
standards, but the limit is set by the BBC Micro’s
rather meagre 32 Kbyte memory.

One of the most useful applications for a home
computer spreadsheet is the annual household
budget, which also has the merit of bemg a
relatively simple model to build. Once
constructed, such a model enables you to see at a
glance what the impact of any increased
expenditure — an unduly heavy telephone bill,

BORAT O | SAORNNAO CREB NESSO INRRERN OA Ase
JIRAUARY FEBRUARY MH

formulae
relative.

or
for

data and

OCTOBER NOVEMBER DE ee
150 . {So

~

say, Or an n unscheduled trip to France — will be on
your expected cash surplus (always assuming that
you have one). In other words, once the model is
built, you can play around with the data and see
_how the effect of one alteration can be reflected
across the spreadsheet as a whole.

BUILDING A MODEL
The first step in building such a model is to write
down ona piece of paper a list of all the household
expenses that you can think of. The next task is to
note the expected monthly figure under each
heading. It is here, at the point of calculating or

~ estimating the monthly amount and keying it into
the model, that Wu-Calc’s strengths become
apparent. The expense categories are keyed in one
after the other down the first column, and each
subsequent column is labelled ‘Jan’, ‘Feb’, ‘Mar’,
etc. Vu-Calc requires that all text entries be
preceded by a double quotation mark, but this
punctuation does not appear on the displayed
spreadsheet. The first few rows and columns of
our model might therefore look like this:

This gives us the basic ‘shape’ of the model. We
now need to input the relevant values, and to do
this we use Vu-Calc’s REPLICATE command.

Vu-Calc has a limited number of commands, all
of which are prefixed with a # sign. (When you
type # at a blank cell, the program goes into
‘command mode’ and waits to be told the
command you want to use.) The most useful of
these commands is REPLICATE — this is because the
most boring part of building a model is the need to
key in all the values the model will use. REPLICATE
is basically a labour-saving device that allows the
same piece of data to be entered into many
different cells simultaneously.
A common part of a household expenses/

budget model is the fixed monthly expenses, such
as the rates, the mortgage or the rent. If the
mortgage is, say, £150 a month, the REPLICATE
command would be used to insert £150 in the
appropriate 12 cells. °
When you invoke the REPLICATE command by

typing #R, a prompt line appears at the top of the
screen, above the model itself, which reads:

Replicate - Enter the cell to replicate, RETURN for the
current cell. 3

This asks you to specify the cells that are to be
copied (notice that you can copy only one cell, not

_a whole block of cells — this is one of Vu-Calc’s
more obvious limitations). The cell is specified by
its co-ordinates, with the row letter given first,
followed by the column number — i.e. C2. Once
this has been entered, the prompt line asks you to:

Enter the range over which the data is to be replicated.

A range of cells in Vu-Calc is indicated by
specifying the first (or leftmost) cell and the
bottom rightmost cell of the range. (Think of the
block of cells as a box; you have to tell the program
the co-ordinates of the box’s top left and bottom
right corners.)

In our example, we want to tell the program to
put £150 into the range of cells in Row C, from C3
to C13 (the columns labelled ‘Feb’ to “Dec’). The
format for this is #R,C2,C3:C13. This automatically
fills each cell, almost instantly, with the value 150.
(The real power of the REPLICATE command comes
in copying formulae from cell to cell, but this is a
fairly specialised area, since such formulae can
either be ‘relative’ to a particular cell or ‘absolute’
—a distinction and a topic that we will cover in
the next instalment.)

We now work through all our expense headings
in the same way. Note that if you decide that in
specified months the amount for a particular
expense should be greater or less than the standard
value, you can simply move the cursor to that cell
and enter a new value. This will immediately
overwrite the old figure.

In our model, column 14 will be the monthly
totals column. There would be little point in using
a spreadsheet if you needed to use a calculator to
add up each month’s expenses, so Vu-Calc can be
used to add all values in any row or column.'The'@
command indicates that you want to add the
values contained in a range of cells; this range is
specified in the same way as before. So, to total the -
year’s mortgage payments, and to put the result in
cell C14, you simply place the cursor at C14 and
type @C2:C13. The result — 1800 in this case — is
immediately displayed. |
We could just as easily have put a formula into

cell C14; instead of adding all the values we could
have entered C2*12. Vu-Calc would have taken
this to be a formula, as the C is not preceded by a
quote mark, and would have executed it
immediately, giving the result 1800. This
illustrates that there is often more than just one
way to achieve a particular result.

_ Inthe next instalment of the course, we will look
at how expenses can ‘grow’ by fixed percentages,
and how relative and absolute cell reference
formulae may be replicated.

THE HOME COMPUTER ADVANCED COURSE 693

IAN McKINNELL

LOGO/COMPUTERSCIENCE — i tists

.

use

DRAGON
SLAYER
In the last instalment of the course we
published four sprite bit maps suitable for

with Commodore 64 _ Loco.
Continuing our investigation of its sprite
facilities, we develop the ‘curve of pursuit’
algorithm through the three bugs problem
and a pursuit game using the sprites, and a
sophisticated interception strategy.

We give here the procedures for a game that uses
LOGO sprites. You control a dragon that attempts
to reach and destroy a city. The defence of the city
is in the hands of a flying knight (under the control
of the computer), who will try to kill the dragon.
You control the dragon’s direction of movement
with the joystick. If you do evade the knight and
get close enough, the city will burst into flames
from the dragon’s breath.

To run the game you will need to read in the

694 THE HOME COMPUTER ADVANCED COURSE

SPRITES file, define your shapes, type in the
procedures and then type GAME. After performing
various set up tasks, the GAME procedure then calls
PLAY, which is the central procedure. PLAY moves
the dragon and the knight in turn, and checks to
see if the dragon has reached the city, or if the
knight has hit the dragon. The remaining
procedures carry out other parts of PLAY’s actions.

The available colour commands are very
straightforward. To set the background colour use
BACKGROUND followed by a colour number, and to
set a sprite colour (and the colour of the line it
draws if the pen is down) use PENCOLOR. The
colour numbers are given names in INIT.
VARIABLES, so that we can then specify colours by
name, using commands such as PENCOLOR :RED.

In the procedure PLAY, the line:

IF HIT? THEN DRAGON. DESTROYED

is used to test if the knight has hit the dragon. The
procedure HIT? illustrates the way in which we can
write our own test conditions in LoGo. It returns a
value of “TRUE or “FALSE, and this is used as an
input to the IF statements. The result “TRUE would
then cause the conditional action to be carried out.

HIT? uses a procedure from the SPRITES file,
TS?, which returns “TRUE if a sprite is touching the

current sprite. HIT? first sets the current sprite to
the dragon and then asks if anything is touching it.

The command JOYSTICK takes 0 or 1 as input
(corresponding to ports 1 and 2). The output is —1
if the joystick is central, 0 if up, 1if at 45°, 2ifat 90",
and so on up to 7. Here, we simply set the dragon’s
heading to 45° multiplied by the output number.

Explosions and similar effects are easy to
achieve using sprites. A shape representing the
explosion is simply flashed on top of the object to
be destroyed. We give the FLAME sprite a low
number so that it will have high priority and thus
appear on top of the other sprites.

The computer controls the knight, but it uses a
very simple defensive strategy: the knight heads
straight towards the dragon. As the game stands
the dragon can slip by the knight and destroy the
town fairly easily.
How can we improve the knight's defensive

strategy? One simple way is to increase his speed,
and simply increasing this from 10 to 11 makes it
very difficult for the dragon to get by. (Wrapping
round the screen is cheating!) A slightly better
strategy is for the knight to aim to cut the dragon
off by heading for the line between the dragon and
the city and staying there.

In the next instalment, we will look at some of
the sprite features found in Atari Loco.

Flame 1

THE HOME COMPUTER ADVANCED COURSE 695

LIZ DIXON

696 THE HOME COMPUTER ADVANCED COURSE

e

SUSPENDING
OPERATIONS
We briefly introduced the concept of
‘interrupt handling’ when we reviewed the
Toshiba HX-10 (see page 669). These are
messages that interrupt the task that a
processor is currently performing, in order
to convey important information to it.
Here, we explore the interrupt mechanism
in detail.

One common application of interrupts is when
we are dealing with input from the keyboard. If a
program directly accesses the keyboard — usually
via the operating system — to obtain the next
input character, then any key that is pressed while
the program is doing something else will be lost.
Even when the processor is fully engaged in
processing keyboard input, it is still possible for it
to lose a character, especially one that follows a
character that needs extra processing, such as a
carriage return. |

The solution is for the keyboard to interrupt
the processor whenever a key is pressed, so that
the processor stops what it is doing and performs
an ‘interrupt service routine’. This takes the
character that has just been input and places it in
a section of memory reserved as a keyboard
buffer. The processor can then return to whatever
it was doing and carry on as though nothing has
happened. | |
Whenever the operating system keyboard
input routine is called, it does not look at the
keyboard directly but takes the next character out
of the buffer instead (waiting for one to appear if
the buffer is empty). This mechanism enables the
user to ‘type ahead’ of what actually appears on
the screen, and should ensure that no characters
are lost.

There are, however, two possible problems.
The user may type so quickly that the buffer fills
up faster than the program can deal with the
input, thus causing the buffer to overflow. The
solution to this requires a compromise between

allowing sufficient memory for an adequate-sized
buffer and not wasting too much valuable
memory space. The second problem arises with
those users who feel uncomfortable when a
character does not appear on the screen
immediately a key is pressed. They may keep
pressing the key, and thereby generate dozens of
characters that then go into (and again may
overflow) the buffer. This problem is usually
solved by familiarity with the computer.

Another useful application for interrupts
occurs when output is sent to a printer — which is
often one of the most time-consuming operations

a micro needs to perform. During printing, the
processor may be required to work for 100
microseconds while it sends a character to the
printer, and then wait thousands of microseconds
for the printer to process that character. A
spooling system is one answer to this: it places the
files to be printed in a queue, and part of the first
file in the queue is loaded into another buffer area
of memory. The port that serves the printer will
interrupt the processor whenever the printer is
ready for another character to be sent. The
interrupt service routine will then send the next
character from the buffer, or (if the buffer is
empty) load the next section from the file at the
head of the queue into the buffer. In this way,
printing can be going on in the background, while
the processor is free to get on with something else.

TYPES OF INTERRUPT
There are some operations that the processor
performs — such as accessing disks — where
being interrupted can cause data loss or some
other catastrophe. There must be, therefore, a
mechanism for masking interrupts so that the
processor can ignore any that occur during a
particularly sensitive operation. If this is the case,
it is preferable that a note is made to indicate that
the interrupt has occurred, so that it can be dealt
with later.

Conversely, if we are dealing with a disk
interface that is interrupt-driven, then its

| CURRENT PC CONTENTS f:
D_D

<>

2,
0,
0,
O

S2

e X ‘ ° ‘ °
1
18

y

KKK) XY
,

interrupt One
_ When an interrupt occurs, the
processor completes execution
of the current instruction, and
stacks the current contents of
the program counter. The
interrupt vector address
appropriate to the interrupt is
then loaded into the program
counter, and control passes to
that address — usually in ROM.
This address points to another
address — usually in RAM —
where a JMP instruction directs
control to the actual interrupt
service routine. This is
terminated by the RT|
instruction, which passes
control back to the main ~
program via the return address
on the stack. Since the JMP
instruction is stored in RAM, it
can be found and changed by
the programmer so that on an
interrupt, control passes first to
a special-purpose user routine
and then to the normal service
routine

NMI VECTOR

JMP NMI S/R

JMP SWI S/R

JMP IRQ S/R

THE HOME COMPUTER ADVANCED COURSE 697

Interrupted Interrupts
If an interrupt occurs during an
interrupt, one possible solution
is for the processor to ‘nest’ the
interrupts: whenever an
interrupt occurs, PC is stacked
and the new interrupt is handled
immediately and control returns
to the stacked address. The
limits on this nesting are the
capacity of the stacks, and the
ability of the interrupt-
generating devices to withstand
delays in processing their
interrupts.

An alternative is for the
processor to stack the details of
any interrupt on an interrupt
queue. When the first interrupt
is complete, the processor
inspects the queue, processes
any interrupt it finds there until
the queue is empty, and
eventually passes control back
to the program

9,9,0°9"
IO
POON

INTERRUPTS

INTERRUPT 4

¥,9,0.0:0'0-0.0.9 ets eatatatatatetatet

interrupts would be given priority and under no
circumstances masked — thus giving rise to the
concept of a non-maskable interrupt. Such an
interrupt might come from a circuit that detects a
drop in the mains supply voltage: its service
routine would immediately start saving the
current task while power remained.
When interrupts can occur from more than one

source, we must consider the possibility of nested
interrupts. If an interrupt occurs while the
processor is in the middle of servicing another
interrupt, there are two possible strategies for
handling it. First of all, the new interrupt could be
ignored until the current one is completed.
Secondly, interrupts could be ranked on a scale of
urgency, so that a high-priority interrupt could
override the handling of one with a lower priority.
In this case, the operating system would have to
be able to deal with the nesting of interrupt
service routines.

SOFTWARE INTERRUPTS
The SWI instruction, which we briefly mentioned
on page 577, can be used in a program as a
convenient way of returning to the operating
system by generating its own interrupt — called
the ‘software interrupt’ (as distinct from the
hardware-generated interrupts we have been
discussing so far). SWI instructions can also be
used to act as breakpoints in a machine code
program to aid in debugging; this facility is
provided by many ROM-based machine code
monitors, as well as debugging packages. The
user chooses points in the code where program
execution is to pause, and the instructions at these
locations are replaced with SWls. When the
program is run, the interrupt service routine then
allows the programmer to inspect and possibly
alter the contents of registers and memory
locations, and see exactly what the program is
doing. When execution is resumed, the monitor/

698 THE HOME COMPUTER ADVANCED COURSE

ODD DOOOOLQ]
©2%e°%o°o* ooo

eo
oD
CS<39

>
<5

0

h
K)

6)

e505 ¢

02% 0% ose lo 70%.
PSPS

ese
vy,

Sg
OTe

>

debugger replaces the instruction displayed by
the breakpoint SWI, and continues with the
program from that point. |
The 6809 has three separate interrupt
mechanisms: IRQ (Interrupt ReQuest), FIRQ (First
Interrupt ReQuest) and NMI (Non-Maskable
Interrupt). These are all activated by the
appropriate signal being received on three pins on
the processor chip. The bar above the name (in
IRQ, for example) indicates that they are activated
by a zero signal at the processor, rather than a
one. These three pins are connected to the main
bus so that peripheral chips like the 6820 and
6850 can have their interrupt request output pins
connected to the same bus lines. When the chips
are programmed, the interrupts can be enabled
and then the appropriate signals will
automatically be sent.

There are also three software interrupts caused
by the SWI, SW12 and SW13 instructions.
When an interrupt occurs, control passes to the

vector address contained in a specific location at
the top of memory. These vector addresses are
usually found in ROM, so control will always pass
from there to the same fixed address. However,
this address will normally be in RAM and will
contain a JMP instruction, so that the final
destination can be changed to the user’s own
service routine. The memory locations are:

It is also worth noting that the top two bytes of
memory — SFFFE and SFFFF — contain the reset

vector, the address to which control is transferred
on power-up or a hardware reset; this is usually
the start address of the ROM _ monitor.
Furthermore, the two bytes at SFFFO and SFFF1 are
reserved by Motorola for possible future use. -

Information about interrupts is contained in
three bits of the condition code register (CC); bit
4 (I), bit 6 (F) and bit 7 (E). Setting the I bit to one
masks the IRQ interrupt, setting the F bit masks
FIRQ. The E bit is used by the processor to
differentiate between IRQ or NMI, and FIRQ: if E
gets set to one then there has been an IRQ or NMI,
if E gets set to zero then an FIRQ has occurred.
When an interrupt is received, it is treated in a

similar way to a subroutine call: the contents of
some or all of the registers are stacked so that
control can be returned to the same point in the
program currently being executed. The interrupt
service routine ends with an RTI instruction
(similar to an RTS), which unstacks the registers
and returns control to the original program.

The actual difference between the FIRO and the —
other two interrupts is that FIRQ stacks the
program counter (PC) and the condition code
(CC) registers only, and is therefore much faster
in operation than the other two. The interrupt
service routine, however, must restore any
registers that it uses, so this type of interrupt
should not be used for routines that use more than
just one or two registers.We can see now where
the E bit is used because the same RTI instruction
is used to terminate IRQ and FIRQ routines, but the
processor must determine which registers need
unstacking. The sequence of events when an
interrupt occurs is:

1) The current instruction is _ executed.
2) The I bit is set, disabling other IRQ interrupts. If
the interrupt was a FIRQ or a NMI then bit F is also
set to disable FIRQ. SW12 and SW13 do not mask
other interrupts, but SW1 does.
3) On an FIRQ bit E is cleared to zero, otherwise it
is set to one.
4) The vector in the appropriate memory
locations is loaded into PC and execution
continues from that address.

Our first program looks at another Socal use
for interrupts; namely maintaining a real-time
clock. We shall assume that some timing device,
which could be a special purpose chip like the
6840 interval timer or a division of the system
clock or a modification of the 50Hz mains, is
connected to a PIA at $5000. The first subroutine
will enable the interrupts and set up a 16-bit
counter at $50. The interrupt service routine will
simply increment the counter so that at any time
inspection of $50 will give the number of timing
signals that have been received, from which the
time can be calculated if the start-up time and the
frequency of the timing signals are known.

The second example program assumes a
printer is connected to the same PIA at SE000. We
shall employ a buffer, of indeterminate length, at
$100 to store one line of output to be printed by

the service routine. A flag at S50 is set to zero
while the line is being printed, and to one when
the line is finished. This will enable some other
routine (which we shall not be concerned with
here) to refill the buffer. Locations $51 and $52
contain a pointer into the buffer giving the
address of the next character to be printed. The
first subroutine sets up the PIA, flag and buffer
pointer for a new line. |

THE HOME COMPUTER ADVANCED COURSE 699

CALLING
COMMODORE
The variable search program that we
developed for the BBC Micro and the
Spectrum on pages 664 to 665 can easily be
converted to work on the Commodore 64.
The Commodore 64 program is, in fact,
little simpler because there are not so many
special cases to allow for. |

PEE EES

Many of the variable names in the Coremodite
version of the program have to be abbreviated to
avoid including a Basic keyword. For example,
NEWLINE cannot be used as a variable name
because it starts with NEW, and TEXTPOINTER
cannot be used either because it includes INT.

The changes near the beginning of the program
are necessary because of the differences in the way
a line of BASIC is stored in the computer’s memory.
In the BBC Micro and the Spectrum, a line of
BAsIC in the internal format begins with a two-byte
line number, with the high order byte coming first,
_and one or two bytes for the length of the line. In
the Commodore 64 a line of Basic begins with a
two-byte pointer to the start of the next line and a
two-byte line number, with the low onder byte
coming first in both.
We still Ha to 0 skip REM lines and strings inside

quotes, but we do not have to look for any other
special cases that might cause confusion, like the
hexadecimal numbers on the BBC Micro or the
hidden binary form of numbers on the Spectrum.
The section of the program that actually picks

out the variable names looks for a letter of the
alphabet first, then letters or digits, and at the end
it looks for a S$ or % sign indicating a string or
integer variable and a (, indicating a function or
array. The Commodore 64 does not allow the
underscore character that can be included in
variable names on the BBC Micro and the
Spectrum.

Although the Commodore 64 can display both
upper and lower case letters, the difference is only
in the form of the character as it appears on the
screen, and not in the internal code for the
character. Thus, the program only needs to look
for upper case letters in a variable name.

The Commodore 64 version of the program is
used in the same way as the BBC Micro and
Spectrum versions. Type in the search program
and SAVE it, then LOAD the program to be searched
and append the search program to it. You can then
search the program by “RUN 30000”, and typing in
the variable name when the program asks for it,
ending the name with “(” if you want to find an
array name.

There is a simple method of joining two SAVEd
programs on the Commodore 64, provided the
line numbers in the first program are all less than
the line numbers in the second program. The
method uses two of the pointers in page zero:
TXTTAB, at addresses 43 and 44, which hold the
address where the BASIC program starts, and
VARTAB, at addresses 45 and 46. A BAsIc program
ends with a byte containing zero that marks the
end of the last line of the program, then two more
zero bytes that mark the end of the program. The
address in VARTAB is normally the byte following
the last of these zeros. To join two programs
together, first LOAD the program with the lowest
line numbers, then type:

PRINT PEEK(45), PEEK(46)

If the first number is between two and 255 subtract
two from it and POKE the result into address 43. Ifit
is zero or one, POKE 254 or 255 into address 43 and
POKE one less than the result of PEEK(46) into
address 44. You can then LOAD the second
program, and finally type:

POKE 43,1: POKE 44,8

This will put the normal value back into the ‘start
of Basic’ pointer and the programs will now be
joined together.

Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card.

16-Bit Arithmetic Group

SOURCE

of 7

Hex Bytes Cycles States
« of No.of M No No Opcode ces

H
Symbolic

Comments S43 210 76- PV N C Z S Operation Mnemonic

apne

SF ce

. : Od v Lid

aoe

=e
UE

Pe
oe

Le

: pees oS ee SEU H

oo € a é e

o.

oO

ON

t
i

or : eee

oF 1

wm Uo

36
ix

em

AS

es
Ly

aN

Ny

i)

Se
e

ue Csi + | —. hie.

cl

cs

ts
]

J Poe

ROE: Se

